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Abstract

We present a framework for ensuring convergence of sample average approximations
to stochastic optimization problems that include expectation constraints in addition

to per-scenario constraints.
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1. Introduction

Stochastic optimization problems with
mixed expectations and per-scenario con-
straints (SOESC) are ubiquitous in ap-
plications. As an example problem, con-

sider an independent system operator (ISO)

of an electric power network. In response
to bids from a set of generators, the ISO
agrees to purchase quantities of electric-
ity « € R™ for a future period at prices
mo € R™. In order to ensure participation
in the market and sufficient supply, the
prices m should represent forward prices
as the expectation (under a risk-neutral
measure) of future spot prices m(w); so,
mo — Ey[r(w)] = 2T — 27, where 7(w)
satisfies an equilibrium condition for the
future market under a random outcome
w and 2T and 2z~ are non-negative vari-
ables satisfying a complementarity con-
dition on the initial purchase quantities.
Other forms of expectation constraints
arise from risk considerations, where, for
example, r(x,w) is a risk function, such

*Preprint ANL/MCS P1562-1108

IMihai Anitescu was supported by the De-
partment of Energy, Contract No. DE-ACO02-
06CH11357.

2John Birge was supported by The Univer-
sity of Chicago Booth School of Business.

Preprint submitted to Elsevier

as excess loss, associated with outcome
w that must be compensated in expecta-
tion with allocated capital, zg, as g —
E,[r(z,w)] = 0. Expectation constraints
also arise when the non-anticipativity of
first-stage decisions is given explicitly as
x — E,[z(w)] = 0. In the following, we
represent these constraints generally as
E, [¢(z,y(w),w)] = 0, where z repre-
sents the first-stage, or upper-level, de-
cisions and y(w) represents the second-
stage, or lower-level, decision. In addi-
tion, the problems of the generators have
per-scenario constraints, resulting in a
SOESC problem.

Other examples of applications for-
mulated as SOESC problems include port-
folio optimization with conditional value-
at-risk objectives and constraints [3] and
stochastic receding horizon control of con-
strained systems [6].

This paper is concerned with conver-
gence of sample average approximation
(SAA) approaches for SOESC. While con-
vergence of SAA has been amply ana-
lyzed for per-scenario-only constraints [1,
7] and for expectations-only constraints
[2, 5, 8], a similar analysis for SOESC is
lacking. This paper takes an initial step
toward filling that gap.
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2. Formulating SOESC as mixed non- once those are determined, the remaining
linear equation — optimization prob- variables are deterministic and finite di-

lems
SOESC can be formulated as

. E’w ) |
meKmI’Iyl%B)eKy [Qf)(l‘ y(w) UJ)]

such that 0= E, [¢(z,y(w),w)].

0=T(z,y(w),w), Yw € Q.

(1)

Here ¢ : R" xR™ x Q — R, ¢ : R™ x
R"™xQ — RP, T': R"xR"™x) — R?, are
differentiable functions, and K, K, are
closed sets. We note that both inequal-
ity and complementarity constraints can
be formulated in this fashion, by an ap-
propriate choice of K, and K.

We define the partial Lagrangian,

L2, y(w),w, A) =

$@,y(w), ) + ANTY(z,y(W), w).

With it, we define the following mixed
minimization—nonlinear equation problem:

0= B [b(@,y(w), )] (2 {y(@)}) =
argmin  E,, [L? (z,y(w),w, \)]
TEK,y(w)eK,
s.t. I'(z,y(w),w) = 0,Vw € Q.
(2)
In some circumstances, the formula-
tion (2), which originates in a Lagrangian
relaxation, is equivalent to the formula-
tion (1). An example of sufficient con-
ditions for this to occur is presented in
Section 4. Should such an equivalence
be determined, then y(w) satisfies, based
on the reversibility principle, the follow-
ing relationship:

argmin £P(z, y(w),w, A)
glw, A\, x) = yweK,

st. I'(z,y(w),w) = 0,Vw € Q,

(3)
provided that, for each w, A, z in the neigh-
borhoods of interest, the solution exists
and is unique.

With this framework, the solution of
the minimization-nonlinear equation prob-
lem (2) can be restated as

x = argmin E,, [LP(z,§(w, z, A),w, A)].
€K,

(4)

Because y can be determined inde-

pendently for different w, A,z and since,

mensional, the problem (4) is approach-
able by SAA.

What we must now show is that, should
y be determined by SA A, then the result-
ing approximation of the data functions
for (4) approximates uniformly the so-
lution set for the minimization problem
and nonlinear equations, respectively, with
probability one.

3. Convergence of approximations
of mixed nonlinear equations —
optimization problems

Assumption We assume that the func-
tions fV,¢", f, g appearing in this sec-
tion are continuous in (z, A).

Notation All sequences of functions
indexed by V depend on the stochastic
parameter w, but we do not explicitly
represent that dependence (e.g. f(x, \,w)
~ V().

The various convergence concepts used
here can be found in [7]. The following
concept is central to our work:

Definition [7, 6.86]: Uniform conver-
gence with probability one (UC w.p.1).
N — f w.p. 1if, for almost all w and
for any e, there exists N*(e,w) such that

sup ’fN(.T,)\) - f(a:,)\)’ <e

TzeX NEA

An important consequence of UC w.p.
1 is that, given a sequence (zV,\V) —
(x*,\*), we have that fN(z™V,\V) —
fl@*, A*) wp.l.

The first few results extend results in
[7] to the case of functions depending on
a parameter.

Lemma 1. Let x € X, a compact set.
Let v(A\) = mingex f(z,\) and let S(A)
be the solution set of the same problem;
then (a) v(X\) is continuous; and (b) the
following holds

hinji\llp ngl(),\) z* elgf/\*)

Proof (a) Let A — A\*. Let now
a™ be a sequence satisfying f(z™, \") =
v(A"), and let * be such that f(z*, \*) =
v(A*). We then have that

x—z*| =0.

V(") = f@™A") < fla®, A" M2 ()



and thus lim sup v(A") < v(A*). In addi-
tion,

o(NT) = f(a™, A7) < f(a", A7)
=v(A) + f(x™, ) — f(x", A").

By continuity of f, this implies v(\*) <
lim inf v(A™) which proves the claim of
part (a).

(b) Assume that this claim is not true.
That is, there exist € > 0 and a subse-
quence A" — \*, such that
SUP,neg(an) ifresa 2" —27[| > €. Since
2" € X and X is compact, it has an
accumulation point . Because of the
above relationship, we must have that
Z ¢ S(A\*), and thus f(Z,\*) > v(\*).
From an argument similar to the one in
part (a), and using the convergence of z"
to &, we obtain that f(Z, \*) =
lim f(2™, A") = limv(A") = v(\*) and,
thus a contradiction. a

Lemma 2. Suppose that there exists a
compact set C such that

(i) 0 #S(\) € C;

(ii) f(x, ) is finite valued and continu-
ous on C x A\, where A is a compact
set;

(iii) fN(x,\) — f(z,\) wp. 1as N —
00, uniformly for x € C.

Then, D(SN(X),S(\) — 0 w.p. 1,
uniformly in \. Here we denote by S™ ()
is the solution set of mingecx fN(x,\), by
D(-,-) the distance between two sets, and
by d(-,) the distance between a point and
a set.

Proof We assume, WLOG, that fV —
f for all w, uniformly in (x, \).

Assume that D(SV()),S) does not
converge to 0 w.p. 1 uniformly. Then,
there exist an w and an € and N, — oo
such that, for any k, there exists V¢ €
SNk (AN®) such that

inf |a™ —z| > €V (5)
zeS(ANF)

Since A and C' are compact, we can ex-
tract a subsequence Ny, such that 2N
and A% are convergent to z* and \*.

To simplify the notation, we relabel the
sequence Ny, as N.

From Lemma 1, for NV sufficiently large,
we must have that, for AV is sufficiently
close to A*, D(S(AY), S(\*)) < <.

In turn this, in addition to (5), im-
plies that, for N sufficiently large, we

have

inf xN—x| > §VN,
zE€S(A*) 4
which then implies that f(x*, \*) > v(\*).
Since V¥ € SNM(AN), we have that
N (@, AN < fN(2,A\N), where & € S(\*).
From the uniform convergence of fV, we
have that

fl@z*, ") = limfN(xN,)\N)
< lim Nz, AV)
= f(@A) =v(X"),

which is a contradiction. O
We now investigate the stability of
systems of nonlinear equations.

Lemma 3. Let C be a compact set. We
define FN = {z| fN(z) = 0}NC and F =
{z|f(x)=0}nC. If fN — f UC w. p.
1, then D(FN F*) — 0 w.p. 1.

Proof We prove this statement by
contrapositive. There then exists a se-
quence (which we denote WLOG the same
as the original sequence), such that there
exists IV € C that satisfies FN(zV) =
0, and d(z,F) > €. Since C is com-
pact, we can assume (after extracting a
subsequence and relabeling) that 2V —
x*. Since d(zVN,F) > ¢, it follows that
d(z*, F) > ¢ but f~ converges uniformly
and, therefore, 0 = fN(zV) — f(z%),
which is a contradiction. a

The results of our lemmas are gen-
eral, but they have several caveats. For
example S (AY) may be empty in Lemma
2 and FVN may be empty in Lemma 3,
and the result would still hold. What
we are really interested in is to approx-
imate the intersection S(A) N F, which
is not possible if either SV or FV are
empty with nonzero probability. To pre-
clude that possibility, we effectively need
a constraint qualification and perturba-
tion analysis, which will be addressed partly
in Section 4 and in future research.



Lemma 4. Consider the coupled mini-
mization — nonlinear equation problem

min f(x, \);

min g(z,\) =0.

Denote by S(N\) the solution set of the
first problem and by F the solution set
of the second problem. Assume the fol-
lowing

i Ux{S(A\),A\} N F has a unique so-
lution point (z*,\*) € Cx x Chy,
where the sets Cx and Cx are closed
and compact.

i The sequences f and g™ converge
to f and g uniformly on C' x Cy.

1t The coupled problem

min f¥ (z, \);

zeX

gV (z,\) = 0.

has a solution (xN,\N) € Cx x Oy
w.p. 1.

Then, (zV,AV) — (z*,\*) w.p. 1.

Proof Define by S[¥()) the solution
set of the problem, mingex fV(x, \), and
by FN the solution set of the problem,
g~ (z,A\) = 0. By assumption (iii),

2N e SN, (2N, AN) e FN.

Take now an accumulation point of (™, AV),

which we denote by (Z,\) € Cx x Cj.
Then, by Lemma 2 and using (ii), we
have that S™(AY) — S(\) w.p. 1 and,
thus, & € S(A). Similarly, by Lemma 3
and using (i), we have that (Z,\) € F,
and thus

(m) € Ua{S(\), A} N F.

From assumption (i), we must then have
that £ = z* and A = \*. Therefore,
(xV, AY) has a unique accumulation point

and thus is convergent w.p. 1. O

4. Example application of the the-
ory

We now show how the theory we have
developed in Section 3 can be applied
to SOESC. The case where 2 is infinite
requires too large a technical preamble,
so we limit ourselves to the case where

the event space is finite, that is, Q =
{wlaw% s 7WM}7 with p(wz) = pi > 0.
In addition, we assume that K, and K,
represent only nonnegativity constraints.
In that case, problem (1) can be rewrit-
ten as a deterministic problem:

min

M
21>0,y1(w)>0 > im1 Pid(w, y(wi), wi)

st. 0= Zi\il pitb(z, y(w;), w;)
Yw; € Q: 0=T(z,y(w;),w;).
(6)

Here, y(w;) € R, x € R™. The map-
pings ¢, 1, are twice continuously dif-
ferentiable mappings. We denoted by y;
and by x; subsets of the vectors y and x.

To simplify our notation, we use the
following aggregate notation:

Y = (y(w1)>y(w2)7"'7y(wM))
io= (n(wi)yi(we), - y(wn))
z = (I‘,Y’)7 zZ1 = (l’l,Yl)
F(xvy(wl)vwl)
[z, y(w2), w2)
9(2) = :
F(m7y(wM)7wM)
M
fz) = Zpi¢(x,y(wi)7wi)
11\7/11
h(z) = Zpi¢($7y(wi),wi)

i=1

This results in the problem

min f(z) s.t h(z) =0,9(z) = 0.

2,21 >0

(7)

We assume that its (unique) solution is
z*.

We define by 77, and, respectively, Z,
the index set of the constraints z; > 0,
which are active at z* with respect to the
vector z1, and, respectively, z. That is,
217, =0, 2]z >0, and 27 = 0. Here,
we denote by A the complement of the
set A.

Let z* be the solution of the problem
(7). We assume that at z* we have the

following:

[A1] J(z) = [V.g V.h]z has full column
rank at z*.



[A2] At z*, we have that
WV fH 9N + Rt u >0,

Vu # 0 that satisfies V,gu = 0 and
Uur = 0.

Here \* € R™, u* € RP are the La-
grange multipliers, which satisfy

0=V.(f+XTh+uTg)- (") (8)

and exist from assumption [Al]. As-
sumption [A1] is the widely encountered
linear independence constraint qualifica-
tion. Assumption [A2], however, is stronger
than the typical second-order condition,

in that the positive definiteness of the
Lagrangian is required over a larger space,
one that excludes the constraints V,hu =

0.

Consider now the auxiliary problem

mzin f(2)+h(z)TA st g(z)=0. (9)

We immediately have the following result

Lemma 5. For A = \*, the solution of
problem (9) is z*. In addition, for ||\ — X*||
sufficiently small, (9) has a unique so-
lution, z(X\), which is continuous in A.
With this notation, \* is the only local
solution of the nonlinear equation h(z(\))

0.

ProofIt is immediately recognizable that
(8) are precisely the first-order optimal-
ity conditions for (9) and that [A1] and
[A2] are the constraint qualification and
second-order sufficient conditions for (9).
The continuity of z(A) follows from the
stability under perturbation of nonlin-
ear programming solutions [4]. From any
solution of h(z(A)) = 0 we can obtain
a point satisfying first-order optimality
conditions for (7). But under the condi-
tions here such points are locally unique
[4], which completes the proof. O
Therefore, (2*,\*) is the only local
solution of the following mixed minimiza-
tion — nonlinear equations problem.

z= argmin f(2)+h(z)T);

2,2120,9(2)=0

h(z) =0.

(10)
Note that here, in the first minimization
A is a parameter, and not a variable, and
h(z) = 0 is not enforced.

Lemma 5 then shows the equivalence
between the formulation (1) and (2).

The next step is to prove the equiva-
lence of (2) with (4). The key step is the
following lemma.

Lemma 6. Consider the problem

Jmin 9l y(w).w)] + AT (e 5(w). )]
st. 0=T(z,y(w),w),

(11)
for w one of w;, i =1,2,..., M. Then,
in a neighborhood around x = z* and
A = A\, the above problem has a unique
solution y(x, \,w), which is continuous
in (x,\).

Proof For w = w;, from (8) it follows
that, for A = A* and x = «*, p}, the com-
ponent of p* corresponding to I'(z, y(w;), w;)
is the Lagrange multiplier of I', which
satisfies the first-order conditions of (11).
Then, from [Al] and [A2], it follows
that (11) satisfies the constraint qualifi-
cation and strong second-order sufficient
conditions at y*(w;). From parametric
stability results of nonlinear program so-
lutions [4], the conclusion follows. 0.

We are now in position to state and
prove our main result.

Theorem 1. Assume that problem (6)
satisfies assumptions [Al] and [A2] at

2 = (2%, @),y (@), -y (@) As-
sume that SAA applied to (6) results in a
solution whose z-value, zV , and A\-multiplier
AN (the multiplier of the expectation con-
straint), exist and are in a compact neigh-
borhood of z* and \*; then ¥ converges

to * with probability one.

Proof Define by §(z, A,w) the solution
of problem (11). Define X = {z|z; > 0}
and

f(‘T,A) = E[qﬁ(m,y(m,)\,w),w)
+ /\Tw(a:,y(x,)\,w),w)]
g(x’)‘) = EW(%Z/(%)\,W)M)]-

From Lemma 5 (with h(z(X)) = g(z, A)),
it follows that the solution of (6) is the
unique local solution of the mixed optimi-
zation — nonlinear equation problem

min f(z, \);

min g(z,A) = 0.



It immediately follows that assumption
(i) of Lemma 4 is satisfied. If i.i.d. sam-

pling is used, assumption (ii) of that lemma

follows as well [7]. Finally, we note than
any first—order point of the SAA prob-
lem attached to (6) is also a solution of
the SAA mixed optimization—nonlinear
equation problem, thus assumption (iii)
of Lemma 4 is satisfied. Lemma 4 can be
applied to obtain the conclusion. O

Perhaps the most arguable assump-
tions of our approach are assumptions
[A2] and (iii) in Lemma 4. We point out
that [A2] is satisfied in the case where ¢
is a strongly convex function in x and
y uniformly in w and ' and ¢ are lin-
ear in z and y. We envision that the
assumption (iii) can be relaxed in that
the SAA mixed optimization—nonlinear
equation problem does not need to have
a local solution with probability one, but
only with a probability that asymptoti-
cally converges to one.

5. Conclusions and future work

In this work we have presented a con-
vergence framework for SAA approaches
for SOESC. Such problems have recently
been formulated in a variety of applica-
tions.

In future work, optimality conditions
of generic SOESC will be studied. This
will allow us to extend the SAA conver-
gence result to problems with infinite Q2
event spaces. It seems reasonable from
our analysis that all that is needed is the
existence of a Lagrangian with slightly
stronger second-order conditions (i.e., its
Hessian is positive definite on a slightly
larger space than for the sufficient con-
ditions). Nonetheless, the technical as-
pects are far beyond a short communica-
tion like this one.

Another interesting extension is to con-
sider a saddle point problem instead of
an optimization problem in Lemma 4,
which could remove the assumption of
the boundedness below of the optimiza-
tion problem (3). In turn, this would
avoid the need for strong second-order
conditions.

References

(1]

2]

(3]

[5]

[6]

(8]

J. R. BIRGE AND F. LOUVEAUX, Introduction
to Stochastic Programming, Springer, New
York, 1997.

G. GURKAN, A. OzGE, AND S. M. ROBIN-
SON, Sample-path solution of stochastic
variational inequalities, Mathematical Pro-
gramming, 84 (1999), pp. 313-333.

P. KROKHMAL, J. PALMQUIST, AND S. URYA-
SEV, Portfolio optimization with condi-
tional wvalue-at-risk objective and con-
straints, JOURNAL OF RISK, 4 (2002),
pp. 43-68.

J. NOCEDAL AND S. J. WRIGHT, Numerical
Optimization, Springer Series in Operations
Research, Springer, 1999.

E. PraMBECK, B. Fu, S. ROBINSON, AND
R. Surl, Sample-path optimization of con-
vex stochastic performance functions, Math-
ematical Programming, 75 (1996), pp. 137—
176.

J. PRIMBS, Stochastic receding horizon con-
trol of constrained linear systems with state
and control multiplicative noise, in Amer-
ican Control Conference, 2007. ACC’07,
2007, pp. 4470-4475.

A. SHAPIRO AND A. RUSZCZYNSKI, Lectures
on stochastic programming, 2007. Book in
progress. Available at www2. isye. gatech.
edu/ ashapiro/publications. html, Nov.

W. WANG AND S. AHMED, Sample average
approzimation of expected value constrained
stochastic programs, Operations Research
Letters, 36 (2008), pp. 515 — 519.



(to be removed before final publication) The sub-
mitted manuscript has been created by the Univer-
sity of Chicago as Operator of Argonne National
Laboratory (” Argonne”) under Contract No. DE-
AC02-06CH11357 with the U.S. Department of
Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.




